

@ Jon Hilton 2018. All rights reserved.

af://n7

Before we start
You're here (hopefully) because you want to cut to the chase and learn how to build a real application using
ASP.NET Core MVC.

In order to do that, you're going to need a few things.

Yep, this is the boring but necessary bit but fear not, you'll be writing and running code in no time.

Visual Studio

You don't have to use Visual Studio to write ASP.NET Core MVC web apps and in recent years a few
alternatives have emerged.

For example, you can write and run .NET Core apps using Visual Studio Code and there's a slightly different
version of Visual Studio for the Mac (called... wait for it... "Visual Studio for Mac"!).

But when you're just getting started, Visual Studio (for Windows) remains a common and popular choice and
is what we'll be using for the rest of the course.

The good news is there's a free version for you to download and use (with certain caveats, which you may
wish to take a look at, but don't need to worry about if you're just learning).

Download

Go to the Visual Studio community homepage and click the Download VS Community 2017 button and the
installer for a fully functional version of Studio will download itself to your computer.

Choose the right options

When you run the installer, it will take a moment to download the actual Visual Studio Installer.

Once that loads, you'll get a handy screen that gives you lots of choices.

For this course, you mainly need the ASP.NET and web development components, but it's nice to know you
have choices if you ever decide to get into 3D Games or Mobile Development :-)

It's also worth selecting .NET desktop development, specifically because it will bring in the SQL Server
Express 2016 LocalDB which you can use as a development database server in the future.

So make sure you've at least ticked the checkbox next to ASP.NET and web development, click the Install
button and you're all set.

af://n7
af://n12
af://n17
https://www.visualstudio.com/vs/community/
af://n19

Just in case it's changed since I took that screenshot this course has been written using .NET Core 2.1 (and
the associated development tools).

If anything doesn't work as you'd expect (and especially if you suspect it's due to an updated version of .NET
Core) hit reply to any of the emails from me and let me know.

Sit back and relax while the VS Installer does its thing.

Updating to 2.1

Visual Studio may only give you .NET Core 2.0 out of the box (this is true at the time of writing).

If so, you'll need to install the .NET Core SDK separately in order to target ASP.NET Core 2.1.

Head to https://www.microsoft.com/net/download/windows and click the button to download and install the
.NET Core 2.1 SDK.

af://n30
https://www.microsoft.com/net/download/windows

A Side Project

Over the course of the next few lessons, we're going to build a Trello clone.

If you're not familiar with Trello, it's basically an online kanban board, useful for managing your work.

You can create one or more kanban boards.

Each board can have any number of columns and cards.

A card represents a task/feature you need to work on.

When you add a card it typically starts off in the left column (often called "Todo") and then moves across the
board as you work on it.

Here's a sneak peek of where we'll end up.

af://n35

I should probably say at this point, I'm no UI expert. Thankfully you don't need to be to learn how ASP.NET
MVC works.

What are the features?

hint: the clue's in the screenshot ;-)

One of the challenges when building software is that moment, right at the beginning, where you start with a
blank piece of paper and no code. It feels like all the work is ahead of you and you're not entirely sure where
to start.

This is especially true when you're also trying to learn a new programming language/framework at the same
time.

So, before we start (and I promise, the code follows shortly) it's worth breaking this down into what features
we want to build.

The smaller the better. What we're aiming for, are features you can build in an hour or so. That way, you get to
learn ASP.NET Core whilst seeing your efforts come to fruition in hours, not days or weeks.

af://n45

There's no better motivator than seeing the application spring to life in front of your eyes.

So, with a little bit of domain knowledge (and studying other examples like Trello for clues) we can start to
think about what our users will want/need to do.

The easiest way to do this is to sit down and brainstorm all the possible "tasks" our users are going to want to
undertake with an online kanban board application.

See list of boards
Add board
View board
Add column (to a board)
Add card (to a board)
Change card title
Move card to another column

And of course there are plenty more.

When you come to your own pet projects I highly recommend going through a brainstorming process, where
you create a list (just like this one) of the key "things your users want/need to do".

It really helps get your imagination going and gives you a list which you can then prioritise, so you know what
to build first.

What's in a name?

There are only two hard things in Computer Science: cache invalidation and naming things Phil Karlton

If you've ever found yourself arguing (often with yourself) about what to call that method/class/view then you
know how easy it is to get hung up on what something's called.

So more on a whim than for any good reason I've started referring to this Trello clone as Donatello.

Depending on your age/interests, your mind has either jumped to the Italian Renaissance sculptor, or the
Teenage Mutant Ninja Turtles.

af://n72

photo credit: W10002 Wondercon 2016 - Donatello via photopin (license)

Either way it doesn't really matter, but that's the name we'll be using in all the code samples etc.

It all starts with a blank screen (project)

We can't build much without a project so let's get that going first.

You'll typically create at least one project per application. It provides a means of grouping together all of the
code for your application, as well as indicating what third party libraries your project might need (often
referenced via the ASP.NET package manager - NuGet).

Visual Studio enables you to have multiple projects for your application which are themselves grouped
together within a solution.

In Visual Studio, click File -> New -> Project

You'll find yourself staring at a big ol' list of possibilites.

We need to find the ASP.NET Core project template, typically under Visual C# -> .NET Core -> ASP.NET Core
Web Application.

Pick a name etc. then click OK.

http://www.flickr.com/photos/28277470@N05/25478349703
http://photopin.com/
https://creativecommons.org/licenses/by-sa/2.0/
af://n81

In case you don't feel you had enough decisions to make in that last window, now you get a whole load more!

You might want to explore some of these options at a later date. For example, if you're interested in building
Single Page Applications (SPAs) on top of ASP.NET Core, you could use one of the starter templates e.g.
Angular.

In our case, we want to start with the simplest possible project (so we can add what we need, and nothing
else).

Select Empty for the web application type.

Also make sure you've got .NET Core and ASP.NET Core 2.1 selected at the top.

At this point we don't want to worry about Authentication and definitely don't want to complicate things by
introducing Docker, so you can just hit the OK button.

Hello World

It's always a good idea to check that things are working properly, even when your app is as simple as this one.

Hit CTRL + F5 and you should see your first (and last) Hello World of this course.

You're all set

Now you're all set to get started with the fun bit, building features.

We'll be starting with the list of boards.

af://n98
af://n101

The First Feature
So now we know what we're building, we've installed Visual Studio and created our project.

It makes sense to start by implementing the list of kanban boards.

Here's what we're aiming for.

From here our users will be able to navigate to any of the boards (and eventually add more boards).

Before we get too heavy into the details (controllers, views, view models and how they all interact) let's build
this boards list view.

Then once you've got a working example under you belt we can dig into more comprehensive explanations of
how (and why) it works, as we add more features.

This might look like a lot to absorb in one sitting but remember you can always come back and go through
this again.

A brief introduction to controllers

Whatever you build in ASP.NET MVC you're going to need a controller.

When someone requests a page on your site, their request will be routed to a controller, more specifically an
action on a controller.

af://n104
af://n113

You can think of actions as methods or functions.

For example.

This Index() action is just about as simple as a controller action can be.

We'll look at the details of how web requests are routed to controllers later on, but for now, if we were using
the default routing setup for an MVC project, you would trigger the Index action by opening a browser, and
navigating to...

http://<your-app-here>/home/index

And, you would get back an empty screen.

Index() returns Ok() which simply tells our MVC controller to return an HTTP status code of 200 (OK).

A 200 (OK) status code means everything worked, and the request was successful.

Of course, you'd rarely do this in the real world and would be more likely to return some content, or a web
page (view).

public class HomeController : Controller

{

 public IActionResult Index()

 {

 return Ok();

 }

}

af://n127

Create a boards controller

With our rough idea of what controllers look like, we need to create one for when users want to view a list of
kanban boards.

It's standard practice to have a Controllers folder, and to put all of your controllers in there.

We'll adopt this convention for now to keep things simple.

In your brand new web application, create a folder called Controllers (right-click the Project in Solution
Explorer, select Add -> New Folder)

Then right-click on your new folder, and select Add -> Controller.

As we've already seen, VS2017 likes giving you choices, here's another one...

We're only interested in MVC controllers for now, and want to write the code ourselves (not let VS do it for us)
so we can stick to the first option MVC Controller - Empty.

VS will prompt you for a controller name. Call it Home.

af://n127

Scaffolding

The first time you create a controller in a new project Visual Studio might install some NuGet packages
and tell you it's scaffolding.

We'll touch on NuGet later in the series, but think of it as the primary Package Manager for .NET (a bit
like npm for front-end applications).

When we instructed VS to create a controller, it added a NuGet package that allows it to some "clever"
things like automatically generating controllers for us to support basic operations (like writing to and
reading from a database).

This is called scaffolding.

For this course we will generally stick to creating "empty" controllers and writing the code ourselves, so
that we get a better understanding of how everything works.

After a short while, you should find yourself looking at this controller...

This action differs slightly from the example we looked at, can you see what's changed?

Yep, gone is the return Ok() line, and in its place we return a View.

Create a boards list view

Generally speaking, we're going to be using views to display content in our application.

Views let you use standard HTML elements to render your app and mix in dynamic content (for example, from
a database) with these standard HTML elements.

A word on MVC Conventions

ASP.NET Core MVC comes with some default "out of the box" conventions.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Threading.Tasks;

using Microsoft.AspNetCore.Mvc;

namespace Dontaello.Controllers

{

 public class HomeController : Controller

 {

 public IActionResult Index()

 {

 return View();

 }

 }

}

af://n151

These defaults cover things like where to look for your controllers and views.

By default ASP.NET Core MVC will expect your views to live in a folder called....

... Views (bet you didn't see that coming).

It also looks at your controller and action names.

Views\<controller-name>\<action-name>

In our case...

... MVC will try to locate a view called Index.cshtml in the Views\Home folder.

Views\Home\Index

Create a new folder at the root of your project and call it Views.

Then right-click on the Views folder and select Add -> Folder and add a "sub folder" called Home.

Finally, right-click on the Home folder and select Add -> View.

More VS choices now await you.

For the most part we can stick with the defaults here.

The key bit is to make sure your View name is Index, so that MVC can locate it.

public class HomeController : Controller

{

 public IActionResult Index()

 {

 return View();

 }

}

We'll cover layout pages shortly but for now, leave Use a layout page ticked, and the textbox below it empty.

Hit Add and you'll see the default "new view template" content.

Your new view appears in Solution Explorer (this is a good time to check it's in the right folder, otherwise MVC
might not be able to find it).

Never too early to check your work

Before we continue...

What do you expect to see if you hit CTRL+F5 to run your application?

Your shiny new Index page, and the word Index?

Give it a go and see.

Hmmm, so we're still seeing our original hello world.

@{

 ViewData["Title"] = "Index";

}

<h2>Index</h2>

af://n180

Where is that text coming from? and why aren't we seeing our shiny new view?

The answers lie in startup.cs.

Hello Startup.cs

Startup.cs is at the heart of any ASP.NET Core application.

It is the "go-to" place to set up your application, including things like security, routing, whether or not to
enable MVC.

Take a moment to figure out where that pesky "Hello World!" is coming from...

Yep, there it is, in the Configure method.

This is the simplest web application you could possibly write in ASP.NET Core, it simply returns "Hello World!",
no matter what URL you visit.

The thing is our application doesn't actually know that we want to use MVC and isn't configured to use any of
the MVC features such as controllers, views etc.

If we'd chosen one of the other project templates when we created our project some of the following steps
would have been done for us.

It can be a useful time saver to use one of ASP.NET Core's starter projects but it also comes at a cost, namely
the fact that you get a load of other stuff in your project that you may or may not need.

Plus it's quite useful to understand how to do this yourself, should you ever need to modify an existing
project.

Enter MVC

To enable MVC in our application, we need to do two things.

The first bit is done in the ConfigureServices method.

Yours is probably empty right now, so go ahead and add this line...

ASP.NET Core MVC relies on various built-in services to work correctly, this line ensures they are all registered
and available to our application.

Then we need to tell our app to go ahead and use MVC (with default routing options) by adding
app.UseMvcWithDefaultRoute() to the Configure method.

app.Run(async (context) =>

{

 await context.Response.WriteAsync("Hello World!");

});

public void ConfigureServices(IServiceCollection services)

{

 services.AddMvc();

}

af://n190
af://n201

Whilst we're here we can remove the lines that called app.Run as this is now redundant, MVC will take over
our application and start serving content using controllers and views, no need for Hello World anymore.

Now try running your application again.

Tada, you should be looking at our amazing home page.

What if it doesn't work?

Whenever you build anything using a framework like ASP.NET MVC things can (and do) go wrong.

The most likely issue you might see here is this one...

You'll get this if ASP.NET can't locate your view for some reason.

As error messages go this is actually pretty useful and tells you exactly where to look.

public void Configure(

 IApplicationBuilder app, IHostingEnvironment env)

{

 if (env.IsDevelopment())

 {

 app.UseDeveloperExceptionPage();

 }

 app.UseMvcWithDefaultRoute();

 // removed app.Run line

}

af://n213

If you do encounter it, go ahead and check the folders mentioned to see if your view is in there.

Chances are, the view you thought you added is either in the wrong folder or has the wrong name.

But what about that list of Kanban boards?

Here's a reminder of what we're aiming for with this first feature.

And here's where we've got to.

Configured our app to use MVC (with default routing)
Added a very simple controller, with one action that returns a view
Created the relevant view
Removed the "boilerplate" hello world code
Checked everything worked as expected

That last bit is crucial. No matter how small the step you've just taken, testing what you've got so far is always
worth doing.

Occasionally (OK, a lot of the time) things don't work as you might expect, and the longer you delay testing,
the more you have to backtrack to work out what caused your app to stop working!

Introducing the ViewModel

We've done pretty well up to this point in our exploration of MVC.

In fact, we've touched on the C (controllers) and the V (our basic view), which just leaves us with the M
(model).

Specifically, we're going to create our first ViewModel.

We will cover the difference between Models and ViewModels in a subsequent lesson, but for now, you can
think of the ViewModel as the place where your data goes so that it can be returned from your controller to
your view.

af://n222
af://n239

Your view can then show the contents of a ViewModel using some simple binding syntax (which you're about
to see).

First up we'll create a folder for our ViewModels.

Add a new folder to the root of your project, called ViewModels.

Then right-click and select Add -> Class.

Strangely, Visual Studio is still determined to give you choices at this point (even though we were quite clear
that we wanted a new class).

Select ASP.NET Core from the menu on the left, and Class from the pane on the right.

Name it BoardList.cs and hit Add.

Create the first version of a Board List ViewModel

So what does our ViewModel need to contain?

af://n254

Well, we know we want a list of kanban boards so a list would be a good starting point.

And we know we want something to represent a "board" in this context.

So let's create that Board class first.

We can add a Board nested class to the BoardList class in BoardList.cs.

Nested classes

Depending on your experience of C#, this might look a little strange.

You've probably seen a few classes, but not necessarily many nested like this (where one class lives
inside another).

All it really means is that this class is always referenced in relation to its parent.

So if you were to try and create a new instance of Board from somewhere else in your application,
you'd need to use its full name like this...

You don't have to nest your classes like this but I find it helps to be explicit, in this case being very clear
that this Board class is intrinsically linked to our ViewModel and not for general consumption elsewhere
in our app.

As far as we're concerned, this ViewModel is only ever going to be used for this one feature/view (a list of
kanban boards).

For that reason we don't need to go crazy and add loads of properties to our ViewModel that we don't need.

Remember this image of what we're aiming for?

public class BoardList

{

 public class Board

 {

 }

}

var board = new BoardList.Board();

If you think of each "Board" being represented by an instance of our Board class, what does it need?

Well for now just a title really e.g. ASP.NET Core.

So go ahead and add a Title property to the Board class.

Now what about that list I mentioned? If we want our ViewModel to contain one or more of these "Board"
representations, we'll need a list to put them in.

Add that to the top of your BoardList class and you're good to go.

Object reference not set to an instance of an object

public class BoardList

{

 public class Board

 {

 public string Title { get; set; }

 }

}

public class BoardList

{

 public List<Board> Boards { get; set; } = new List<Board>();

 // Board class definition omitted for brevity...

}

You don't have to include the end of that line...

But if you don't, the list will be null to start with.

This will likely catch you out later. If you subsequently try to add items to the list without making the
above call (to "new up" or "instantiate" the list) you'll get a Null Reference Exception.

It's easier all round if you take this defensive step to instantiate the list now.

Your future self will thank you!

Back to the controller

That's our ViewModel defined, so how can we return an instance of it to our view?

We need to revisit our controller action.

Open up HomeController.cs and take a look at the Index action.

So far we've just returned a View (using the default conventions that MVC uses to locate views).

But we can also return an ViewModel alongside our View.

To do so we'll need to create a new instance of our BoardList ViewModel and pass it in the call to return
View(); .

First up, we create a new instance of our BoardList ViewModel.

Then we create a new Board instance.

= new List<Board>();

public class HomeController : Controller

{

 public IActionResult Index()

 {

 return View();

 }

}

public IActionResult Index()

{

 var model = new BoardList();

 var board = new BoardList.Board();

 board.Title = "Jon's Board";

 model.Boards.Add(board);

 return View(model);

}

af://n293

We can then set the title of that new Board instance before adding it to the list.

Finally we can return the resulting ViewModel alongside our View.

Did you get a red squiggly line when you added this code to your controller? Read on to find out why and how
to fix it...

Namespaces

If you add this code to your own controller, chances are Visual Studio will underline any references to
BoardList with a squiggly red line.

This is VS pointing out that you haven't really told it where your BoardList class lives, or how to
reference it in this controller class.

If you hover over the offending code (BoardList), you'll see a handy explanation, plus a link to Show
potential fixes (or you can press CTRL+.).

Select the first option and VS will add your ViewModel's namespace to the list of referenced namespaces
at the top of the controller class.

The red squiggle disappears and now you can continue to reference any classes in that ViewModels
namespace without VS complaining.

af://n318

Show data in the view (using Razor)

Finally, we have something to show for all our efforts.

Well almost, we just need to make it visible.

To make this "Board List" (albeit only one board right now) visible, we need to display the contents of the
ViewModel in our View.

By default, MVC views use something called Razor to show content in our views.

The Razor syntax enables us to bind parts of our HTML markup to the data contained within our
ViewModel. This lets us mix our "static" text (headings, paragraphs etc.) and "static" markup (HTML tags
such as DIVs etc.) with dynamic data from our ViewModel.

For example, if you had this HTML ...

... and a property on your ViewModel called FirstName .

MVC could "render" the first name in that heading using this syntax...

Which would render this... (assuming FirstName is set to Barry!).

First up, we need to tell our View which ViewModel we're going to be using.

Add this line to the very top of Index.cshtml.

With that in place, Visual Studio springs into life and gives you Intellisense whenever you reference your
ViewModel in the view.

<h1>Good Morning</h1>

<h1>Good Morning @Model.FirstName</h1>

@model Donatello.ViewModels.BoardList

// rest of index.cshtml here...

af://n318

This means you don't have to guess (or remember) what you named your properties on your ViewModel,
because Visual Studio will help you out by showing you what's available.

Underneath the <h2>Index</h2> line, add this...

Then hit CTRL+F5 to see what we've got.

Well we're not going to win any design awards for this one, but it's a start.

The Razor syntax above loops over each board in our Model.Boards list and then spits out the board's title.

Before we go any further let's add another board to our list, just to prove this works as we think it should.

Head back to HomeController.cs and add another board to your list.

Then run your app again and you should see two "boards" in all their plain text glory.

@foreach(var board in Model.Boards)

{

 @board.Title

}

public IActionResult Index()

{

 var model = new BoardList();

 var board = new BoardList.Board();

 board.Title = "Jon's Board";

 model.Boards.Add(board);

 // add this...

 var anotherBoard = new BoardList.Board();

 anotherBoard.Title = "Another Board";

 model.Boards.Add(anotherBoard);

 return View(model);

}

It works!

So we have our list of boards, returned as a ViewModel from a Controller and rendered in a View.

But it looks, well let's be honest, a bit ugly.

This is where this free sample of Practical ASP.NET Core MVC ends.

If you purchase the full book, your very next step will be to make this page look a little closer to the example
we saw earlier and bring in a CSS framework to do all the heavy lifting.

From there we'll move on to make things a bit more "real". You'll see how to store the kanban board data in a
database (using Entity Framework Core) and make it possible for users to add/move cards etc

Next we'll take a moment to make this look a little closer to the example we saw earlier and bring in a CSS
framework to do all the heavy lifting.

af://n350
https://products.jonhilton.net/practical-asp-net-core-mvc/?pk_campaign=free-chapters
https://products.jonhilton.net/practical-asp-net-core-mvc/?pk_campaign=free-chapters#buy-now

	Before we start
	Visual Studio
	Download
	Choose the right options
	Updating to 2.1

	A Side Project
	What are the features?
	What's in a name?
	It all starts with a blank screen (project)
	Hello World

	You're all set

	The First Feature
	A brief introduction to controllers
	Create a boards controller
	Create a boards list view
	Never too early to check your work
	Hello Startup.cs
	Enter MVC
	What if it doesn't work?
	But what about that list of Kanban boards?
	Introducing the ViewModel
	Create the first version of a Board List ViewModel
	Back to the controller
	Show data in the view (using Razor)
	It works!

