

CSS Pre-processors

What are they?

CSS pre-processors run as part of your development setup. They take the CSS you write and transform it for
the browser.

Just as you'll tend to use a Javascript compiler (e.g. Babel or Typescript) to make your JS compatible with
most browsers, you can do the same with CSS.

This opens up the door to all sorts of time-saving shortcuts and tricks you can pull off with the help of a pre-
processor to take everything you write and transform it back into regular, boring (often perplexing) CSS.

LESS and SASS are the most CSS pre-processors and the ones we'll focus on now.

Here are a few reasons to use a CSS Pre-processor...

Nesting

If you've done any work with CSS you've likely run into things like this...

You want to target your elements (.menu li , or .menu a) but need slightly different rules for more
specific variations (e.g. .important or :hover).

In "vanilla CSS" this leads to duplication. Each style has to be repeated for every variation you need to
target.

If this were a real-world application we would no doubt end up with a lot of lines starting with .menu .

CSS pre-processors use nesting to let you do this instead...

.menu li { color: #666; }

.menu li.important { color: rgb(255, 21, 21); }

.menu a { color: #666; }

.menu a:hover { color: #ccc; }

af://n4
af://n5
http://lesscss.org/
http://sass-lang.com/
af://n10
af://n11

SASS/LESS

This results in exactly the same CSS we had before, but makes it easier to see the hierarchy and removes
the duplication...

That funny looking &:hover is worth breaking down.

& is a shorthand way of referring to the parent element; a in this case.

We want the hover style to apply to the a tag hence the & reference.

Just to emphasise the point. We could do this...

or this...

Both are equivalent and would result in this css.

Variables

With traditional CSS you'll often use things like colors in more than one place.

This is fine until you have to change it! Then you end up having to update your colors in multiple places
(possibly across different files).

.menu {

 li {

 color: #666;

 .important { color: rgb(255, 21, 21); }

 }

 a {

 color: #666;

 &:hover {

 color: #ccc;

 }

 }

}

.menu {

 p:hover { color: #ccc; }

}

.menu {

 p {

 &:hover { color: #ccc; }

 }

}

.menu p:hover {

 color: #ccc;

}

af://n31

All the same shade of red...

With the CSS Pre-processors you can declare variables for things like colors (font-sizes etc.) and reference
them wherever you like.

SASS

LESS

Mixins

You can use Mixins to take a group of CSS declarations and reuse them throughout your CSS (LESS/SASS)
files.

Let's say you want to use some newer CSS features (like flexboxes). Depending on which browsers you're
targeting you may need to specify vendor prefixes to make everything work.

This happens when features are in "draft" form in the official specs but not yet finalised.

The browser vendors (MS, Google, Mozilla etc) often implement support for these features anyway,
but you have to employ vendor prefixes to use them (until the specs are finalised and published).

Here's an example (taken from the handy ShouldIPrefix.com).

Now I don't know about you, but typing this out every time I want to use a flexbox seems a bit... much!

 #main .tagline { color: rgb(255, 21, 21); }

 .highlight { color: rgb(255, 21, 21); }

 span.error { color: rgb(255, 21, 21); }

$primaryColor: rgb(255, 21, 21);

#main .tagline { color: $primaryColor; }

.highlight { color: $primaryColor; }

span.error { color: $primaryColor; }

@primaryColor: rgb(255, 21, 21);

#main .tagline { color: @primaryColor; }

.highlight { color: @primaryColor; }

span.error { color: @primaryColor; }

.page-wrap {

 display: -webkit-box; /* OLD - iOS 6-, Safari 3.1-6, BB7 */

 display: -ms-flexbox; /* TWEENER - IE 10 */

 display: -webkit-flex; /* NEW - Safari 6.1+. iOS 7.1+, BB10 */

 display: flex; /* NEW, Spec - Firefox, Chrome, Opera */

 }

af://n41
http://shouldiprefix.com/#flexbox

SASS Mixins

With SASS we can create a mixin like this...

And use it wherever we like...

... saving us a lot of typing (and making it easy to change the CSS should we need to).

LESS Mixins

Less does a similar thing, but with different syntax.

You can take this even further and pass arguments to mixins.

SASS Mixins with arguments

LESS Mixins with arguments

@mixin flex {

 display: -webkit-box; /* OLD - iOS 6-, Safari 3.1-6, BB7 */

 display: -ms-flexbox; /* TWEENER - IE 10 */

 display: -webkit-flex; /* NEW - Safari 6.1+. iOS 7.1+, BB10 */

 display: flex; /* NEW, Spec - Firefox, Chrome, Opera */

}

.page-wrap {

 @include flex;

}

.flex {

 display: -webkit-box; /* OLD - iOS 6-, Safari 3.1-6, BB7 */

 display: -ms-flexbox; /* TWEENER - IE 10 */

 display: -webkit-flex; /* NEW - Safari 6.1+. iOS 7.1+, BB10 */

 display: flex; /* NEW, Spec - Firefox, Chrome, Opera */

}

.page-wrap {

 .flex;

}

@mixin round-borders($radius) {

 -moz-border-radius: $radius;

 -webkit-border-radius: $radius;

 border-radius: $radius;

}

.button {

 @include round-borders(2px);

}

af://n51
af://n57
af://n61
af://n63

Both will result in this CSS...

Conditionals

Sometimes you're going to want to re-use your CSS but have it behave differently depending on where it's
used.

Both SASS and LESS support conditional logic for this very purpose.

SASS conditionals

Combining conditionals, mixins and variables we can do funky things like this!

.round-borders(@radius) {

 -moz-border-radius: @radius;

 -webkit-border-radius: @radius;

 border-radius: @radius;

}

.button {

 .round-borders(2px);

}

.button {

 -moz-border-radius: 2px;

 -webkit-border-radius: 2px;

 border-radius: 2px;

}

@if $primary {

 color: $primaryColor;

}

$primaryColor: rgb(255, 21, 21);

@mixin button($primary) {

 @if $primary {

 color: $primaryColor;

 }

 border: 1px solid grey;

}

.action {

 @include button(true); // primary color (and our border)

}

.anotherAction {

 @include button(false); // no color specified

}

af://n67
af://n70

Our button's color will be set to primaryColor if we pass true . If not, the color property won't be set at
all.

If we make $primary optional then we can safely omit it and nothing will blow up.

Here we default to false until told otherwise!

LESS Conditionals

Less takes a different approach using "Guards".

This can be a little less intuitive if you're used to conditional statements...

Here we'll only get a button set to the primary color if we pass true when we reference the mixin...

.button(true)

We get the border in both cases.

@mixin button($primary: false) {

 // rest of mixin code

}

.anotherAction {

 @include button(); // no value for $primary, defaults to false

}

@primaryColor: rgb(255, 21, 21);

.button(@primary) when (@primary) {

 color: @primaryColor;

}

.button(@primary) {

 border: 1px solid grey;

}

.action {

 .button(true); // primary color (and our border)

}

.anotherAction {

 .button(false); // no color specified (but still our border)

}

af://n78

To make the @mode argument optional we can tweak it thus...

We specified a default value of false for @primary using the syntax @primary: false ;

Imports

And finally...

We've all been there. You go to tweak some CSS for an application, go to site.css , scroll to the bottom
and add your style there.

Then you cross your fingers, hope for the best and get on with your day!

Thankfully SASS and LESS have a solution to this "one CSS file to rule them all" problem.

You can split your CSS up into different files, organise them into folders, store them next to the relevant
HTML etc.

You can then import your various files whenever you need them.

SASS

LESS

In both cases, you can refactor your mixins out to the respective file (with the correct extension), then
import them where you need them.

@primaryColor: rgb(255, 21, 21);

.button(@primary) when (@primary) {

 border: 1px solid grey;

 color: @primaryColor;

}

.button(@primary: false) when not (@primary) {

 border: 1px solid grey;

}

.action {

 .button(true);

}

.anotherAction {

 .button(); // no value specified for @primary, defaults to false

}

@import "mixins/mixin.scss";

@import "mixins/mixin.less";

af://n89
af://n96
af://n98

Try it yourself: Use LESS (the easy way with Parcel)

If you've read "front-end in four hours" you'll have seen an easy way to get going with Typescript using
Parcel.

We can very easily use LESS with Parcel too...

Open up a folder in Visual Studio Code, or your editor of choice (this will be the root folder for your test
application)
Open up a terminal pointing to this folder (Visual Studio Code has its own; View > Terminal)
Type this command (if you haven't already on your machine)...

Then this one...

Create a new file in this folder and call it index.html

Type this code in index.html

Now create an app.less file in the src folder.

Run parcel (specifying index.html as the entry point for the application)

All being well you'll see something like this...

If you get this error "index.html: Cannot read property 'walk' of null", it's probably because your HTML is
malformed. This can happen when you copy and paste from this guide.

Type the code out instead and you should be good to go.

npm install -g parcel-bundler

npm init -y

<!DOCTYPE html>

<html>

<head>

 <link href="/app.less" />

</head>

<body>

 Hello LESS

</body>

</html>

parcel index.html

af://n503

Now try making a change to app.less

Parcel will spot that you're trying to use less and will download/install the relevant NPM packages.

From here on, whenever you make changes to your less files, parcel will pre-process theme and turn them
into regular CSS.

Check out the dist folder. You'll find the bundled .css file in there which contains the regular CSS for your
LESS code.

Try it yourself: Use SASS (the easy way with Parcel)

We can very easily use SASS with Parcel too...

Open up a folder in Visual Studio Code, or your editor of choice (this will be the root folder for your test
application)

Open up a terminal pointing to this folder (Visual Studio Code has its own; View > Terminal)

Type this command (if you haven't already on your machine)...

Then this one...

Create a new file in this folder and call it index.html

Type this code in index.html

Now create an app.scss file in the src folder

Run parcel, specifying the entry point for the app (index.html).

You should see something like this...

npm install -g parcel-bundler

npm init -y

<!DOCTYPE html>

<html>

<head>

 <link href="/app.scss" />

</head>

<body>

 Hello SASS

</body>

</html>

parcel index.html

af://n505

If you get this error "index.html: Cannot read property 'walk' of null", it's probably because your HTML is
malformed. This can happen when you copy and paste from this guide.

Type the code out instead and you should be good to go.

Now add some css (or indeed SASS) to app.scss and save it

Parcel will spot that you're trying to use SASS and will download/install the relevant NPM package for you.

It will then pre-process the .scss file and publish the resulting css to the dist folder.

What next?

We've just scratched the surface of what Less and SASS can do. Spin up a test app (Parcel is probably the
easiest way to get up and running) and give them a whirl.

One last thing before we go, both SASS and LESS can do loops and maths, which raises some interesting
possibilities...

SASS Loops and Maths

LESS Loops and Maths

Both examples generate CSS classes for col-1 all the way up to and including col-12 (with the relevant
fraction of 100%).

This is basically a simplistic version of something like Bootstrap's grid system. You'd probably need a
float:left in there somewhere and these days everyone seems to be talking about Flexbox as a better

alternative...

But you get the idea.

@for $i from 1 through 12 {

 .col-#{$i} {

 width: (100%/12)*$i

 }

}

.make-columns(@i:1) when (@i =< 12) {

 .column-@{i} {

 width: (100%/12)* @i;

 }

 .make-columns(@i + 1);

}

.make-columns();

af://n657
af://n669
af://n682

Here's the generated CSS in both cases.

Pretty neat huh?! :-)

.col-1 {

 width: 8.3333333333%;

}

.col-2 {

 width: 16.6666666667%;

}

.col-3 {

 width: 25%;

}

.col-4 {

 width: 33.3333333333%;

}

.col-5 {

 width: 41.6666666667%;

}

.col-6 {

 width: 50%;

}

.col-7 {

 width: 58.3333333333%;

}

.col-8 {

 width: 66.6666666667%;

}

.col-9 {

 width: 75%;

}

.col-10 {

 width: 83.3333333333%;

}

.col-11 {

 width: 91.6666666667%;

}

.col-12 {

 width: 100%;

}

	CSS Pre-processors
	What are they?
	Here are a few reasons to use a CSS Pre-processor...
	Nesting
	Variables
	Mixins
	SASS Mixins
	LESS Mixins
	SASS Mixins with arguments
	LESS Mixins with arguments

	Conditionals
	SASS conditionals
	LESS Conditionals

	Imports
	SASS
	LESS

	Try it yourself: Use LESS (the easy way with Parcel)
	Try it yourself: Use SASS (the easy way with Parcel)
	What next?
	SASS Loops and Maths
	LESS Loops and Maths

