
Futures in Rust
Copenhagen Rust Group

Alice Ryhl

May 2019

Alice Ryhl Futures in Rust May 2019 1 / 26

What is a future?

A future consists of three things:

1 The state of a task.

2 A function that can poll the task.

3 A way to notify when the task is ready to be polled.

What is a future not?

A future is different from many similar concepts.
I Not a Javascript promise.
I Not a thread handle.

A future must be polled.

Alice Ryhl Futures in Rust May 2019 2 / 26

Why are futures hard?

1 Futures are not the same as promises.

2 Futures are like iterators, but there is no analogy to the for loop (yet).

3 Futures only return a single item, so the difference between chaining
and mapping is subtle.

4 Futures need a runtime to poll them. A while loop is not good
enough.

Alice Ryhl Futures in Rust May 2019 3 / 26

What is tokio?

Tokio provides the runtime and provides some leaf futures: IO and timers.

The Runtime

Manages a thread pool that polls the futures. Only polls futures that have
notified that they are ready.

The Reactor

The Reactor is tokio’s solution to:
I Non-blocking file IO is very limited. The aio * functions in the C

standard library work by doing synchronous IO in a thread pool.
I A future runs no code when it is not polled. How would a timer notify

when the future is ready?

Alice Ryhl Futures in Rust May 2019 4 / 26

The Future trait

pub enum Async<T> { Ready(T), NotReady }

type Poll<T, E> = Result<Async<T>, E>;

pub trait Future {

type Item;

type Error;

fn poll(&mut self) -> Poll<Self::Item, Self::Error>;

}

Alice Ryhl Futures in Rust May 2019 5 / 26

Example

It’s time to make some futures.

use tokio::fs::read;

use futures::Future;

let future = read("data.txt")

.map(|vec| vec.len())

.map(|length| println!("{} bytes.", length))

.map_err(|err| eprintln!("{}", err));

tokio::run(future);

println!("tokio::run is blocking");

Alice Ryhl Futures in Rust May 2019 6 / 26

Example

Let’s look at the example in detail.

use tokio::fs::read;

use futures::Future;

let future = read("data.txt")

// ^-- Future<Item = Vec<u8>, Error = std::io::Error>

.map(|vec| vec.len())

.map(|length| println!("{} bytes.", length))

.map_err(|err| eprintln!("{}", err));

tokio::run(future);

println!("tokio::run is blocking");

Alice Ryhl Futures in Rust May 2019 7 / 26

Example

Let’s look at the example in detail.

use tokio::fs::read;

use futures::Future;

let future = read("data.txt")

.map(|vec| vec.len())

// ^-- Future<Item = usize, Error = std::io::Error>

.map(|length| println!("{} bytes.", length))

.map_err(|err| eprintln!("{}", err));

tokio::run(future);

println!("tokio::run is blocking");

Alice Ryhl Futures in Rust May 2019 8 / 26

Example

Let’s look at the example in detail.

use tokio::fs::read;

use futures::Future;

let future = read("data.txt")

.map(|vec| vec.len())

.map(|vec| println!("{} bytes.", vec.len()))

// ^-- Future<Item = (), Error = std::io::Error>

.map_err(|err| eprintln!("{}", err));

tokio::run(future);

// ^-- Only accepts Future<Item = (), Error = ()>

println!("tokio::run is blocking");

Alice Ryhl Futures in Rust May 2019 9 / 26

Example

Let’s look at the example in detail.

use tokio::fs::read;

use futures::Future;

let future = read("data.txt")

.map(|vec| vec.len())

.map(|vec| println!("{} bytes.", vec.len()))

.map_err(|err| eprintln!("{}", err));

// ^-- Future<Item = (), Error = ()>

tokio::run(future);

println!("tokio::run is blocking");

Alice Ryhl Futures in Rust May 2019 10 / 26

Running several futures

use tokio::runtime::Runtime;

let future1 = read("data.txt")

.map(|vec| println!("{} bytes (1).", vec.len()))

.map_err(|err| eprintln!("{}", err));

let future2 = read("data.txt")

.map(|vec| println!("{} bytes (2).", vec.len()))

.map_err(|err| eprintln!("{}", err));

let mut runtime = Runtime::new()?;

runtime.spawn(future1);

runtime.spawn(future2);

println!("runtime.spawn is not blocking");

runtime.shutdown_on_idle().wait().unwrap();

println!("but this is");

Alice Ryhl Futures in Rust May 2019 11 / 26

Chaining futures

A common source of confusion is the difference between map and
and then.

let future = read("data.txt")

.and_then(|vec| {

write("data_copy.txt", vec)

})

.map(|vec| println!("{} bytes copied.", vec.len()))

.map_err(|err| eprintln!("{}", err));

tokio::run(future);

Alice Ryhl Futures in Rust May 2019 12 / 26

Chaining futures

A common source of confusion is the difference between map and
and then.

let future = read("data.txt")

.and_then(|vec| {

write("data_copy.txt", vec)

// ^-- This returns a Future!

// Had we used map, we would end up with a

// Future<Item=Future<...>, ...>

})

.map(|vec| println!("{} bytes copied.", vec.len()))

.map_err(|err| eprintln!("{}", err));

tokio::run(future);

Alice Ryhl Futures in Rust May 2019 13 / 26

Chaining futures

A common source of confusion is the difference between map and
and then.

let future = read("data.txt")

.and_then(|vec| {

write("data_copy.txt", vec)

})

// ^-- Future<Item=Vec<u8>>

// write resolves to the buffer,

// since it takes ownership of it.

.map(|vec| println!("{} bytes copied.", vec.len()))

.map_err(|err| eprintln!("{}", err));

tokio::run(future);

Alice Ryhl Futures in Rust May 2019 14 / 26

The difference between map and and then

The difference can be seen in the type definitions. The map method is
defined as

fn map<F, U>(self, f: F) -> Map<Self, F> where

F: FnOnce(Self::Item) -> U,

The Map type has the following Future impl:

impl<U, A, F> Future for Map<A, F> where

A: Future,

F: FnOnce(A::Item) -> U

{

type Item = U

type Error = A::Error

}

Alice Ryhl Futures in Rust May 2019 15 / 26

The difference between map and and then

The difference can be seen in the type definitions. The and then method
is defined as

fn and_then<F, B>(self, f: F) -> AndThen<Self, B, F> where

F: FnOnce(Self::Item) -> B,

B: IntoFuture<Error = Self::Error>,

The AndThen type has the following Future impl:

impl<A, B, F> Future for AndThen<A, B, F> where

A: Future,

B: IntoFuture<Error = A::Error>,

F: FnOnce(A::Item) -> B,

{

type Item = B::Item

type Error = B::Error

}

Alice Ryhl Futures in Rust May 2019 16 / 26

Join and select

There are two combinators for combining futures.

Join

The join combinator creates a future, that resolves once two futures have
finished. The result is a tuple of the two results.

Select

The select combinator waits on two futures, and returns the result of the
one that completes first.

Alice Ryhl Futures in Rust May 2019 17 / 26

Join example

let future1 = read("data.txt");

let future2 = read("data2.txt");

let future = future1.join(future2)

.and_then(|(vec1, vec2)| {

let mut vec = vec1;

vec.extend(&vec2[..]);

write("concat.txt", vec)

})

.map(|vec| println!("{} bytes written.", vec.len()))

.map_err(|err| eprintln!("{}", err));

tokio::run(future);

Alice Ryhl Futures in Rust May 2019 18 / 26

Then

The then method deserves extra mention.

I Both map and map err in one operation.

I Both and then and or else in one operation.

I Allows using ? in the closure.

fn then<F, B>(self, f: F) -> Then<Self, B, F> where

F: FnOnce(Result<Self::Item, Self::Error>) -> B,

B: IntoFuture,

Self: Sized

Notice that Result implements IntoFuture!

Alice Ryhl Futures in Rust May 2019 19 / 26

Stream

There is also a Stream trait.

pub trait Stream {

type Item;

type Error;

fn poll(&mut self) -> Poll<Option<Self::Item>,

Self::Error>;

}

Not a fundamental type

A stream is not a fundamental type in the same way Future is.
I You can’t run a Stream.
I Will always be wrapped in a Future.
I Will not be in std.

Alice Ryhl Futures in Rust May 2019 20 / 26

Stream combinators

A Stream has many combinators similar to the ones on Future, and a
collection of combinators similar to those on Iterator.

I The methods map, and then, map err, or else and then perform
the operation on each element or error.

I The methods filter, chain, skip while, take while, zip and so
on perform the same operation as they would on an Iterator.

I The methods for each, fold and collect are the main ways to
turn a Stream into a Future.

I Two ways to merge: select and merge.

Alice Ryhl Futures in Rust May 2019 21 / 26

Flattening, and then and Streams

If you want to turn a Future into a Stream with some sort of mapping,
you can use map followed by flatten stream.

This is common when using the hyper crate:

I A connection in hyper starts with a ResponseFuture.

I The future resolves to the headers and a stream of Chunks.

and then and flatten

The and then method could also be replaced by a map followed by a
flatten, but you will probably never need to do this.

A stream of streams can be flattened using the flatten stream
combinator.

Alice Ryhl Futures in Rust May 2019 22 / 26

Creating futures manually

Instead of putting futures together, you can manually implement Future
on your own types.

We will look at an example of how to do this. The example future will
collect data from an internet connection, and pass it to serde to decode
the received json.

Alice Ryhl Futures in Rust May 2019 23 / 26

The future of futures

A rebuild of the future system is being worked on. It involves some
changes:

I The Future trait will be moved into the standard library.

I A new async fn feature is added.

I The waker system is reworked.

Alice Ryhl Futures in Rust May 2019 24 / 26

The new Future trait

Added to the standard library:

pub trait Future {

type Output;

fn poll(self: Pin<&mut Self>, cx: &mut Context)

-> Poll<Self::Output>;

}

Changes:

I No error type!

I Pin around self.

I A Context variable (contains the waker).

I Combinators not provided by std.

Alice Ryhl Futures in Rust May 2019 25 / 26

The async fn feature

The new async fn feature let’s the compiler turn your imperative code into
a state machine.

async fn get_url<T>(url: &str) -> Result<T> {

let response_future = /* ... */ ;

let (parts, body) = response_future.await?;

let mut vec = Vec::with_capacity(parts.content_length);

for chunk in body.await? {

vec.extend(&chunk[..]);

}

serde_json::from_slice(&vec[..])?

}

Alice Ryhl Futures in Rust May 2019 26 / 26

	Introduction
	Using futures

