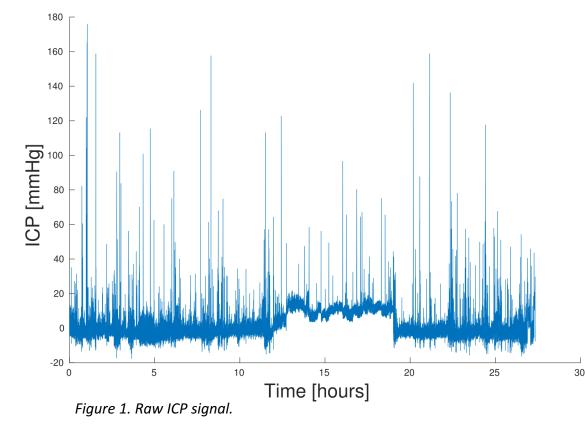


Empirical Mode Decomposition based method for artefact removal in raw ICP signals

Isabel Martinez-Tejada^{1,2}, Jens E. Wilhjelm², Marianne Juhler¹ and Morten Andresen¹


¹Department of Neurosurgery, Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen Ø ²Department of Health Technology, Technical University of Denmark, Building 349, DK-2800, Kongens Lyngby

180

160

Introduction

- Intracranial pressure (ICP) signals present macro-patterns potentially useful for diagnosis and classification of different neurological disease categories.
- ICP signals contain artefacts; *e.g.* very high and short physiologically impossible spikes. These reduce the accuracy of pattern recognition techniques, hindering clinical use of ICP.
- Previous methods for spikes removal assume signal stationarity. However, the ICP signal is non-linear and non-stationary (mean and variance change over time).

Methods: peak identification

Thresholding for peak identification [1]: ICP segment considered a peak if found by IMFs *and* outside $[-P_{th}, P_{th}]$, where:

 $P_{th} = \hat{\sigma} \sqrt{2 \log(L)}$ $\hat{\sigma} = \frac{\text{MAD}}{0.6745}$

$$MAD = Me|IMF_{1-4} - Me(IMF_{1-4})|$$

 $\hat{\sigma}:$ standard deviation of the summed IMFs L: number of IMF samples

Me: median MAD: median absolute deviation

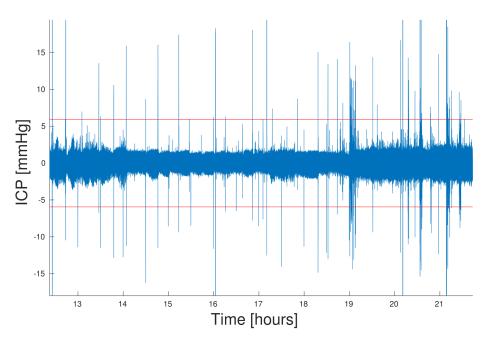
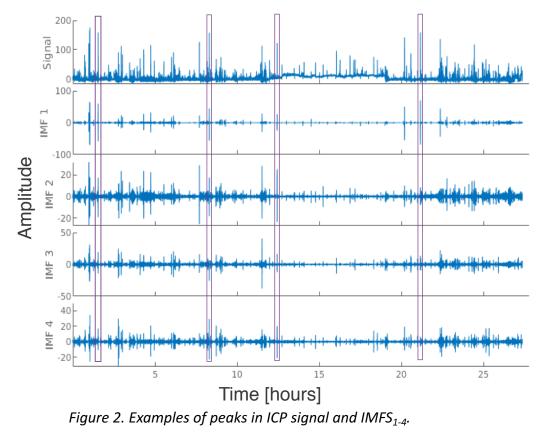


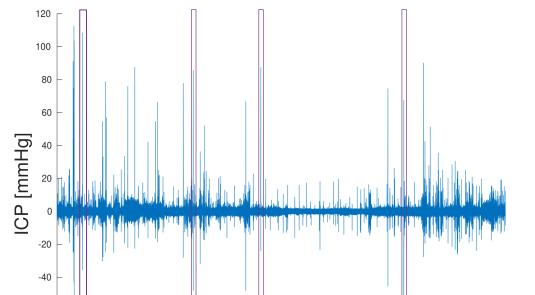
Figure 4. ICP signal with lower and upper thresholds marked in red.

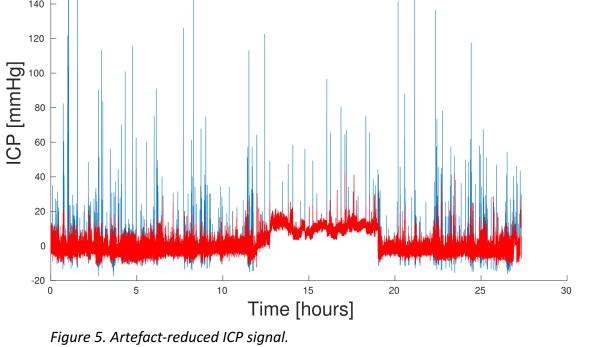
Results ICP raw signal Artefact-reduced ICP signal


To investigate the performance of empirical mode decomposition (EMD) based techniques for spikes removal in raw ICP signals.

Objective

Methods: Empirical Mode Decomposition


 Break down signal into sixteen components known as intrinsic mode functions (IMFs) via empirical mode decomposition (EMD)
 [2].


The first four IMFs (IMFs₁₋₄) are chosen because their peaks locations align with the location of peaks in the ICP signal, highlighted with the purple boxes as examples.

2. Sum $IMFs_{1-4}$ to enhance spike events, enabling a more robust artefact duration estimation.

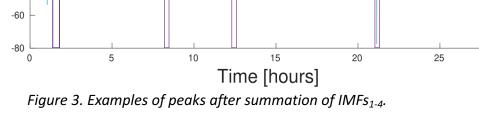
If detection is only based on IMF_1 the widths of the spikes will be underestimated.

Conclusion

A new methodology based on EMD can be used for removal of unphysiological spikes in clinical ICP signals, which is essential for correct patient evaluation and diagnosis in the clinical practice.

Ongoing research

- Calculation of detected peaks' slew rates for spikes characterization.
- Methodology validation with visual spike identification as gold standard.


References

 Boudraa, A. O., Cexus, J. C., & Saidi, Z. (2005). EMD-Based Signal Noise Reduction. Proceedings of World Academy of Science, Engineering and Technology, 2, 93– 96.

[2] Feng, M., Loy, L. Y., Zhang, F., & Guan, C. (2011).
Artifact removal for intracranial pressure monitoring signals: A robust solution with signal decomposition.
Proceedings of the Annual International Conference of the leee Engineering in Medicine and Biology Society, Embs, 2011, 6090182, 797–801.

Acknowledgements

The authors are thankful for contributions from the Novo Nordisk Foundation Tandem Programme.

